What type of protein is myosin




















Offer, C. Moos, and R. View at: Google Scholar E. Flashman, C. Redwood, J. Moolman-Smook, and H. Oakley, J. Chamoun, L. Brown, and B. Bennett, R. Craig, R. Starr, and G. View at: Google Scholar F. Pepe, F. Ashton, C. Street, and J. Pepe and B. View at: Google Scholar M. Gautel, O. Zuffardi, P. Freiburg, and S. Weber, K. Vaughan, F. Reinach, and D. View at: Google Scholar S. Einheber and D. Yasuda, S. Koshida, N. Sato, and T. Ackermann and A. Ackermann, L. Hu, A. Bowman, R. Bloch, and A.

Udd, H. Haravuori, H. Kalimo et al. View at: Google Scholar R. Starr and G. View at: Google Scholar G. Bonne, L. Carrier, J. Bercovici et al. View at: Google Scholar H. Watkins, D. Conner, L.

Thierfelder et al. View at: Google Scholar T. Chakrabarty, M. Xiao, R. Cooke, and P. Rayment, W. Rypniewski, K.

Schmidt-Base et al. View at: Google Scholar J. Woodhead, F. Zhao, R. Craig, E. Egelman, L. Alamo, and R. Rayment, H. Holden, M. Whittaker et al. View at: Google Scholar B. Colson, M.

Locher, T. Bekyarova et al. Okagaki, F. Weber, D. Fischman, K. Vaughan, T. Mikawa, and F. Flashman, H. Watkins, and C.

Miyamoto, D. Fischman, and F. Kontrogianni-Konstantopoulos, M. Ackermann, A. Bowman, S. Yap, and R. Freiburg and M. View at: Google Scholar A. Ababou, E. Rostkova, S. Mistry, C. Masurier, M. Gautel, and M. Gruen and M. Ababou, M. Moos, C. Mason, and J. View at: Google Scholar I. Kulikovskaya, G. McClellan, J. Flavigny, L. Carrier, and S. Whitten, C. Jeffries, S.

Harris, and J. Kensler, J. Shaffer, and S. Razumova, J. Shaffer, A. Tu, G. Flint, M. Regnier, and S. Shaffer, R. Kensler, and S. Rybakova, M. Greaser, and R. Moolman-Smook, E.

Flashman, W. De Lange et al. Gilbert, J. Cohen, S. Pardo, A. Basu, and D. Gilbert, M. Kelly, T. Mikawa, and D. Gruen, H. Prinz, and M. Sadayappan, J. Gulick, R. Klevitsky et al. Gulick, H. Osinska et al. Sadayappan, H. Osinska, R. Mun et al. Zoghbi, J. Woodhead, R. Moss, and R. Gurnett, D. Desruisseau, K. McCall et al. Vinkemeier, and K. McGrath, D. Cottle, M. Nguyen et al. Harris, R. Lyons, and K. Konno, S. Chang, J. Seidman, and C. Xu, S.

Dewey, S. Nguyen, and A. Oakley, B. Hambly, P. Curmi, and L. View at: Google Scholar W. Rottbauer, M. Gautel, J. Zehelein et al. Saber, K. Begin, D. Warshaw, and P. Shaffer, M. Razumova, A.

Each globular head has a heavy chain and two light chains for a combined molecular size of about kD. The myosin head is asymmetrical with a length of Angstroms and 65 Angstroms in width, with a total thickness of about 40 Angstroms. This particular helix forms the light chain binding region of the globular domain [9] The amino terminus of each heavy chain has a large globular domain containing the site of ATP hydrolysis.

Molecules of myosin aggregate in muscle cells to form thick filaments. The aggregation of several hundred myosin forms a bipolar structure which stacks in regular arrays. Muscles consist of another protein called actin. Actin forms the thin filament in muscle fibers. Myosin and actin interact through weak bonds. Without ATP bound, the myosin head binds tightly to actin.

With ATP bound, myosin releases the actin subunit and interacts with another subunit further down the thin filament. This process continues in cycle, producing movement. Interaction of myosin and actin is regulated by two other proteins, tropomyosin and troponin. The cycle of myosin-actin interaction is outlined as follows: [10]. ATP binds to myosin and a binding site opens on myosin head to disrupt the actin-myosin interaction, actin is released.

ATP is hydrolyzed. Mutations in MIIA cause early onset myopathy [11]. Myosin 3D Structures. Category : Topic Page. Myosin From Proteopedia. Jump to: navigation , search. Show: Asymmetric Unit Biological Assembly.



0コメント

  • 1000 / 1000